
Pomeron Physics and QCD

Sandy Donnachie

University of Manchester

Günter Dosch

Universität Heidelberg

Peter Landshoff

University of Cambridge

Otto Nachtmann

Universität Heidelberg



pub l i s h ed by the pre s s s ynd i cate of the un i v er s i ty of cambr i dge
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

cambr i dge un i v er s i ty pre s s
The Edinburgh Building, Cambridge CB2 2RU, UK

40 West 20th Street, New York, NY 10011-4211, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain

Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

c© A. Donnachie, H. G. Dosch, P. V. Landshoff and O. Nachtmann 2002

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 2002

Printed in the United Kingdom at the University Press, Cambridge

Typeface Computer Modern 11/13pt System LATEX2ε [tb]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Pomeron physics and QCD / Sandy Donnachie . . . [et al.].
p. cm. – (Cambridge monographs on particle physics, nuclear physics,

and cosmology; v. 19)

Includes bibliographical references and index.
ISBN 0 521 78039 X

1. Regge theory. 2. Pomerons. 3. Quantum chromodynamics.
I. Donnachie, Sandy, 1936- II. Cambridge monographs on particle physics,

nuclear physics, and cosmology; 19
QC793.3.R4 P66 2002

539.7′21–dc21 2002023376

ISBN 0 521 78039 X hardback



Contents

Preface ix

1 Properties of the S-matrix 1

1.1 Kinematics 1
1.2 The cross section 3
1.3 Unitarity and the optical theorem 6
1.4 Crossing and analyticity 6
1.5 Partial-wave amplitudes 12
1.6 The Froissart-Gribov formula 13
1.7 The Froissart bound 16
1.8 The Pomeranchuk theorem 18

2 Regge poles 21

2.1 Motivation 21
2.2 The Sommerfeld-Watson transform 25
2.3 Connection with particles 29
2.4 Regge cuts 34
2.5 Signature and parity of cuts 37
2.6 Reggeon calculus 38
2.7 Daughter trajectories 39
2.8 Fixed poles 41
2.9 Spin 44

v



vi Contents

3 Introduction to soft hadronic processes 47
3.1 Total cross sections 47
3.2 Elastic scattering 53
3.3 Spin dependence of high energy proton-proton scattering 65
3.4 Soft diffraction dissociation 67
3.5 Central production 75
3.6 Diffractive Higgs production 78
3.7 Helicity structure of the pomeron 79
3.8 Glueball production 83
3.9 The Gribov-Morrison rule 85
3.10 The odderon 87
3.11 Scattering on nuclei 89

4 Duality 91
4.1 Finite-energy sum rules 91
4.2 Duality 93
4.3 Two-component duality and exchange degeneracy 94
4.4 The Veneziano model 97
4.5 Pion-nucleon scattering 100

5 Photon-induced processes 107
5.1 Photon-proton and photon-photon total cross sections 107
5.2 Vector-meson-dominance model 108
5.3 Vector-meson photoproduction 113
5.4 Spin effects in vector-meson photoproduction 117
5.5 Diffraction dissociation 120
5.6 Pion photoproduction 122

6 QCD: perturbative and nonperturbative 129
6.1 Basics of QCD 129
6.2 Semi-hard collisions 135
6.3 Soft hadron-hadron collisions 137
6.4 The QCD vacuum 140
6.5 Nonlocal condensates 145
6.6 Loops and the non-Abelian Stokes theorem 149



Contents vii

6.7 Stochastic-vacuum model 151
6.8 Renormalons 155

7 Hard processes 160
7.1 Deep-inelastic lepton scattering 160
7.2 The DGLAP equation 165
7.3 The BFKL equation 167
7.4 Regge approach 172
7.5 Real photons: a crucial question 178
7.6 Perturbative evolution 179
7.7 Photon-photon interactions 182
7.8 Exclusive vector-meson production 191
7.9 Inclusive vector-meson photoproduction 204
7.10 Diffractive structure function 206
7.11 Diffractive jet production 213
7.12 The perturbative odderon 216

8 Soft diffraction and vacuum structure 219
8.1 The Landshoff-Nachtmann model 219
8.2 Functional-integral approach 227
8.3 Quark-quark scattering amplitudes 232
8.4 Scattering of systems of quarks, antiquarks and gluons 236
8.5 Evaluation of the dipole-dipole scattering amplitude 239
8.6 Wave functions of photons and hadrons 247
8.7 Applications to high-energy hadron-hadron scattering 254
8.8 Application to photoproduction of vector mesons 258
8.9 Photoproduction of pseudoscalar and tensor mesons 261
8.10 The pomeron trajectory and nonperturbative QCD 262
8.11 Scattering amplitudes in Euclidean space 267

9 The dipole approach 269
9.1 Deep-inelastic scattering 269
9.2 Production processes 274
9.3 Different approaches to dipole cross sections 278
9.4 Saturation 282



viii Contents

9.5 Two-pomeron dipole model 289

10 Questions for the future 295

Appendix A: Sommerfeld-Watson transform 301

Appendix B: The group SU(3) 307

Appendix C: Feynman rules of QCD 310

Appendix D: Pion-nucleon amplitudes 314

Appendix E: The density matrix of vector mesons 322

References 327

Index 343



1
Properties of the S-matrix

In this chapter we specify the kinematics, define the normalisation of ampli-
tudes and cross sections and establish the basic formalism used throughout.
All mathematical functions used, and their properties, can be found in [9].

1.1 Kinematics

We consider first the two-body scattering process 1 + 2 → 3 + 4 of figure
1.1, where the particles have masses mi and four-momenta Pi, i = 1, . . . , 4.
Our notation is that the four-momentum of a particle is P = (E,p), where
E is its energy and p its three-momentum, and we write

P1.P2 = E1E2 − p1.p2. (1.1)

The Lorentz-invariant variables s, t and u, called Mandelstam variables, are
defined by

s = (P1 + P2)2

t = (P1 − P3)2

u = (P1 − P4)2 (1.2)

with the relation

s+ t+ u =
4∑

i=1

m2
i . (1.3)

Equation (1.3) means that a two-body amplitude is a function of only two
independent variables. We shall normally take these to be s and t, with u
defined via (1.3), and write the amplitude as A(s, t). However, sometimes

1



2 1 Properties of the S-matrix
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Figure 1.1. Two-body scattering process 1 + 2 → 3 + 4

it will be more appropriate to use s and u, or t and u, as the independent
variables, and then write the amplitude as A(s, u) or A(t, u).
Figure 1.1 not only describes the scattering process 1 + 2 → 3 + 4 in the
s-channel but, by reversing the signs of some of the four-momenta, it can
also represent the t-channel process 1+3̄ → 2̄+4 and the u-channel process
1 + 4̄ → 3 + 2̄, where the bar denotes the antiparticle.
In the s-channel centre-of-mass frame of the initial particles 1 and 2, the
four-momenta are given explicitly by

P1 = (E1,p1) P2 = (E2,−p1)
P3 = (E3,p3) P4 = (E4,−p3) (1.4)

where Ei is the energy of particle i, p1 is the three-momentum of particle 1
and p3 the three-momentum of particle 3 in this frame. Then

s = (E1 + E2)2 = (E3 + E4)2 (1.5)

and

E1 =
1

2
√
s
(s+m2

1 −m2
2) E2 =

1
2
√
s
(s+m2

2 −m2
1)

E3 =
1

2
√
s
(s+m2

3 −m2
4) E4 =

1
2
√
s
(s+m2

4 −m2
3) (1.6)

and

p2
1 =

1
4s

[s− (m1 +m2)2] [s− (m1 −m2)2]

p2
3 =

1
4s

[s− (m3 +m4)2] [s− (m3 −m4)2]. (1.7)
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From (1.2) and (1.4),

t = m2
1 +m

2
3 − 2(E1E3 − p1.p3)

= m2
1 +m

2
3 − 2(E1E3 − |p1||p3| cos θs)

u = m2
1 +m

2
4 − 2(E1E4 + p1.p3)

= m2
1 +m

2
4 − 2(E1E4 + |p1||p3| cos θs) (1.8)

where θs is the angle between the three-momenta of particles 1 and 3 in
the s-channel centre-of-mass frame, that is it is the centre-of-mass-frame
scattering angle.
The physical region for the s-channel is given by

s ≥ (m1 +m2)2 and − 1 ≤ cos θs ≤ 1. (1.9)

For arbitrary masses the boundary of the physical region as a function of
s and t is rather complicated. It is simpler for equal masses mi = m,
i = 1, . . . , 4, so that p1 = p3 = p and

s = 4(p2 +m2)
t = −2p2(1− cos θs)
u = −2p2(1 + cos θs). (1.10)

The physical region for s-channel scattering is then given by s ≥ 4m2,
t ≤ 0 and u ≤ 0. In this channel, s is an energy squared and each of t
and u is a momentum transfer squared. Similarly the physical region for
t-channel scattering is t ≥ 4m2, u ≤ 0, s ≤ 0; and for u-channel scattering
it is u ≥ 4m2, s ≤ 0, t ≤ 0. The symmetry between s, t and u is readily
demonstrated by plotting the physical regions in the s-t plane with the s
and t axes inclined at 60◦, as shown in figure 1.2.

1.2 The cross section

For orthonormal states 〈f | and |i〉, that satisfy 〈f |f〉 = 〈i|i〉 and 〈f |f ′〉 =
δff ′ , the S-matrix element 〈f |S|i〉 is defined such that

Pfi = |〈f |S|i〉|2 = 〈i|S†|f〉〈f |S|i〉 (1.11)

is the probability of |f〉 being the final state, given |i〉 as the initial state.
If the set of orthonormal states |f〉 is complete,∑

f

|f〉〈f | = 1. (1.12)



4 1 Properties of the S-matrix
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Figure 1.2. Physical regions for equal-mass scattering such as ππ → ππ

Starting from the initial state |i〉, the probability of ending up in some final
state must be unity so

1 =
∑
f

|〈f |S|i〉|2 =
∑
f

〈i|S†|f〉〈f |S|i〉 = 〈i|S†S|i〉. (1.13)

Since (1.13) must be true for any choice of the complete set of basis states
|i〉 it follows that S†S = 1. Similarly the requirement that any final state
|f〉 has originated from some initial state |i〉 yields SS† = 1. That is, S is
unitary.
We now go over to the case of continuum states and specialise to a two-body
initial state. The scattering matrix S is related to the transition matrix T
by

〈f |S|i〉 = 〈P ′
1P

′
2 . . . P

′
n|S|P1P2〉 = δfi + i(2π)4δ4(P f − P i) 〈f |T |i〉 (1.14)

where P i is the sum of the initial four-momenta and P f the sum of the final
four-momenta. The scattering amplitude is normalised such that the tran-
sition rate per unit time per unit volume from the initial state |i〉 = |P1P2〉
to the final state |f〉 = |P ′

1 · · ·P
′
n〉 is

Rfi = (2π)4δ4(P f − P i) |〈f |T |i〉|2. (1.15)

The total cross section for the reaction 12 → n particles is

σ12→n =
1

4|p1|
√
s

∑
(2π)4δ4(P f − P i) |〈fn|T |i〉|2 (1.16)

where the sum is over the momenta of the particles in the n-particle state
〈fn|. That is, with δ+(p2 −m2) = δ(p2 −m2) θ(p0),
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σ12→n =
1

4|p1|
√
s

∫ (
n∏

i=1

d4P ′
i

(2π)4
2πδ+(P ′

i
2 −m2

i )

)

× (2π)4δ4
( n∑

i=1

P ′
i − P1 − P2

)
|〈P ′

1 · · ·P ′
n|T |P1P2〉|2

=
1

4|p1|
√
s

∫ (
n∏

i=1

d3p′i
2Ei(2π)3

)
(2π)4δ4

( n∑
i=1

P ′
i − P1 − P2

)

× |〈P ′
1 · · ·P

′
n|T |P1P2〉|2. (1.17)

Here, p1 is the initial momentum in the s-channel centre-of-mass frame. It
is given by (1.7):

|p1|2s = (P1.P2)2 −m2
1m

2
2 = 1

4 [s− (m1 +m2)2] [s− (m1 −m2)2]. (1.18)

We must use this in (1.17), which then gives the cross section in any frame:
it is Lorentz invariant, and the momentum integrations may be performed
in any frame.
We may calculate a differential cross section dσ12→n/dω. Typically, ω will
be a momentum transfer between an initial and a final particle, or the
corresponding scattering angle, or the energy of one of the final particles.
To calculate the differential cross section, we first express ω as a function
ω(Pi, P ′

f ) of the various momenta, and then include δ(ω−ω(Pi, P ′
f )) in the

integrations in (1.17). For example, when the final state contains just two
particles and t is the momentum transfer defined in (1.2),

dσ12→34

dt
=

1
4|p1|

√
s

∫
d4P3

(2π)4
2πδ+(P3

2 −m2
3)
d4P4

(2π)4
2πδ+(P4

2 −m2
4)

×(2π)4δ4(P1 + P2 − P3 − P4)|〈P3P4|T |P1P2〉|2δ(t− (P1 − P3)2)

=
1

64π|p1|2s |〈P3P4|T |P1P2〉|2 δ(t− (P1 − P3)2). (1.19)

In the equal-mass case this gives

dσ

dt
=

1
16πs(s− 4m2)

|〈P3P4|T |P1P2〉|2. (1.20)

The formulae in this section apply when the particles involved have no spin
or, if they do have spin, when we average over initial spin states and sum
over final spin states.
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1.3 Unitarity and the optical theorem

Unitarity provides an important connection between the total cross section
and the forward (θs = 0) elastic scattering amplitude; this connection is
known as the optical theorem. Because the operator S is unitary, so that
SS† = 1, for any orthonormal states 〈j| and |i〉

δji = 〈j|SS†)|i〉 =
∑
f

〈j|S|f〉〈f |S†)|i〉 (1.21)

where we have used the completeness relation (1.12). With the definition
(1.14) of the T -matrix, this is

〈j|T |i〉 − 〈j|T †|i〉 = (2π)4i
∑
f

δ4(P f − P i)〈j|T †|f〉〈f |T |i〉. (1.22)

For the particular case j = i,

2 Im 〈i|T |i〉 =
∑
f

(2π)4δ4(P f − P i)|〈f |T |i〉|2. (1.23)

The right-hand side is (1.15) summed over f : it is the total transition rate.
This gives us the total cross section, which is (1.17) summed over n, the
number of final-state particles:

σTot
12 =

1
2|p1|

√
s
Im 〈i|T |i〉. (1.24)

Here, |p1| is again the magnitude of the initial centre-of-mass frame three-
momentum, which is given by (1.18). 〈i|T |i〉 is the scattering amplitude
for the reaction 1 + 2 → 1 + 2 with the direction of motion of the particles
unchanged, that is it is the forward scattering amplitude, θs = 0. For
m3 = m1 and m4 = m2 the forward direction corresponds to t = 0. Then

σTot
12 =

1
2|p1|

√
s
ImA(s, t = 0) (1.25)

where A(s, t) is the elastic scattering amplitude. Equation (1.24) or (1.25)
is the optical theorem.

1.4 Crossing and analyticity

The basic principle of crossing is that the same function A(s, t) analytically
continued to the three physical regions of figure 1.2 gives the corresponding
scattering amplitude there, with s, t, u related by (1.3). This is obviously
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2z

cz

1z

Figure 1.3. Paths of analytic continuation that pass round different sides of a
branch point

true order by order for Feynman diagrams. For example Coulomb scattering
(e−e− → e−e−) and Bhabha scattering (e+e− → e+e−) are described by
the same Feynman diagrams.
It is necessary to make some assumption about the analytic structure of
the scattering amplitude A(s, t) in order to continue from one region to
another. The assumption usually made is that any singularity has a dy-
namical origin. Poles are associated with bound states and thresholds give
rise to cuts. For example in the s-plane a bound state of mass mB =

√
sB

will give rise to a pole at s = sB and there will be cuts with branch points
corresponding to physical thresholds. These arise because of the unitarity
condition (1.23). In this condition, P f2 = s is the squared invariant mass of
the state f , which shows that n-particle states contribute to the imaginary
part of the amplitude if

√
s is greater than the n-particle threshold energy.

The threshold for producing a state in which the particles have masses
M1,M2,M3, . . . is at s = (M1 +M2 +M3 + · · ·)2. In a model with only
one type of particle, of mass m, the thresholds are at s = 4m2, 9m2, . . ..
Each corresponds to a branch point of A(s, t). When a function f(z) of a
complex variable z has a branch point at some point zc, we attach a cut
to the branch point, to remind us that continuing f(z) from z1 to z2 along
paths that pass to different sides of the branch point results in different
values for the function: see figure 1.3. We say that f(z) has a discontinuity
across the cut. Since we may choose the point z2 to lie in any direction
relative to z1, we must be prepared to draw the cut in any direction. It
need not be a straight line. The only constraint is that one end of it is
at z = zc and does not cross any other singularity. For A(s, t), therefore,
we need a cut attached to each branch point s = 4m2, 9m2, 16m2, . . .. By
convention, we draw each cut along the real axis, so that the one attached
to s = 4m2 passes through all the other branch points and effectively all
these branch points need only one cut, the right-hand one in figure 1.4.
A consequence of the assumption of analyticity is crossing symmetry. Con-
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u=4m s=4m

u=u s=s
2 2

BB

Figure 1.4. Poles and cuts in the complex s-plane for equal mass scattering for a
given, fixed t. Recall that u = 4m2 − s− t.

sider the scattering process

a+ b→ c+ d (1.26)

and write its amplitude as Aa+b→c+d(s, t, u), reinstating the variable u
for symmetry, but remembering that it is not independent being given in
terms of s and t by (1.3). The physical region for the process (1.26) is
s > max{(ma +mb)2, (mc +md)2}. In the equal-mass case, t, u < 0; in the
unequal-mass case the constraint on t and u is more complicated, but most
of the physical region lies in t, u < 0. The amplitude may be continued
analytically to the region t > max{(ma +mc̄)2, (mb̄ +md)2} and s, u < 0.
This gives the amplitude for the t-channel process

a+ c̄→ b̄+ d (1.27)

where b̄ and c̄ mean respectively the antiparticles of b and c. That is, we
have

Aa+c̄→b̄+d(t, s, u) = Aa+b→c+d(s, t, u). (1.28)

Similarly for the u-channel process

a+ d̄→ b̄+ d (1.29)

we have
Aa+d̄→b̄+c(u, t, s) = Aa+b→c+d(s, t, u). (1.30)

There are various mathematical results about the analytic properties of
scattering amplitudes. Although these results are not complete, what is
known is consistent with the assumption that the analytic structure in the
complex s-plane for equal mass scattering is that shown in figure 1.4. The
right-hand cut, from s = 4m2 to ∞, arises from the physical thresholds in
the s-channel. The pole at s = sB assumes that there is a bound state
in the s-channel with mass mB =

√
sB. The left hand cut and pole arise

respectively from the physical thresholds in the u-channel and an assumed
u-channel bound state at u = uB. The position of the singularities in
the s-plane arising from u-channel effects is given by the relation (1.3).
Thus the presence of a threshold at u = u0 for positive u means that the
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amplitude A(s, t) must have a cut along the negative real axis with a branch
point at s = s̄0 = 4m2 − t−u0, so that s̄0 = −t when u0 = 4m2. Equally, a
bound-state pole at u = uB will give rise to a pole at s = 4m2 − t− uB. In
figure 1.4 we have drawn the u-channel bound-state pole and the u-channel
cut to the left of the corresponding s-channel singularities. However, they
move as t varies and for physical values of t, t ≤ 0, the u-channel pole is
actually to the right of the s-channel pole, and when t is sufficiently large
negative the two cuts actually overlap.
In perturbation theory, masses are assigned a small negative imaginary part,
m2 → m2−iε, which is made to go to zero at the end of any calculation. The
same iε prescription is used outside the framework of perturbation theory;
for example it makes Minkowski-space path integrals converge for large
values of the fields. In figure 1.4, the iε prescription pushes the branch point
at s = 4m2 downwards in the complex s-plane, and likewise the branch
points corresponding to the higher thresholds, s = 9m2, s = 16m2, . . .. As
ε→ 0, the branch points move back on to the real axis from below. That is,
the physical s-channel amplitude is reached by analytic continuation down
on to the real axis from the upper half of the complex s-plane. This is
equivalent to saying that the physical amplitude is

lim
ε→0

A(s+ iε, t). (1.31)

If we analytically continue it to real values of s between sB and 4m2, there is
no cut and the amplitude is real there[10]. The Schwarz reflection principle
tells us that an analytic function f(s) which is real for some range of real
values of s satisfies

f(s∗) = [f(s)]∗.

So if we make a further continuation via the lower half of the complex plane,
back to real values of s greater than 4m2, we obtain the complex conjugate
of the physical amplitude:

A(s− iε, t) = [A(s+ iε, t)]∗. (1.32)

Therefore, for s ≥ 4m2 and −s < t, u ≤ 0,

2i ImA(s+ iε, t) = A(s+ iε, t)−A(s− iε, t) (1.33)

where it is understood in this equation that we have to take the limit ε→ 0.
(By convention the imaginary part of the amplitude is defined to be real,
as is evident from the factor 2i.) The right hand side of (1.33) is called the
s-channel discontinuity, denoted by Ds(s, t, u).
Similar arguments can be applied to the physical t-channel and u-channel
processes 1+3̄ → 2̄+4 and 1+4̄ → 3+2̄. Thus there must be cuts along the
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Figure 1.5. Contour of integration in the complex s′-plane

real positive t and u axes, with branch points at the appropriate physical
thresholds in these channels, and possibly poles as well. Equivalently to
(1.33) we define the t-channel and u-channel discontinuities by

Dt(s, t, u) = A(s, t+ iε)−A(s, t− iε) = 2i ImA(s, t+ iε)
t > 4m2 and u, s ≤ 0

Du(s, t, u) = A(s, u+ iε)−A(s, u− iε) = 2i ImA(s, u+ iε)
u > 4m2 and s, t ≤ 0 (1.34)

where again the limit ε→ 0 is understood.
Knowing the analytic structure of an amplitude allows us to derive a “dis-
persion relation”. We fix t and use the contour of integration shown in
figure 1.5, which must be such that the point s = s′ is within it. Then
(s′ − s)−1A(s′, t) is analytic within the contour except for a pole at s′ = s,
so that Cauchy’s theorem tells us that the integral of this function is just
the residue at the pole, which is 2πiA(s, t). Hence

A(s, t) =
1
2πi

∮
ds′
A(s′, t)
s′ − s (1.35)

with u (u′) given in terms of s (s′) and t by (1.3). Assume for the moment
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Figure 1.6. A contour of integration equivalent to that of figure 1.5

that A(s, t) goes to zero like some negative power of s as |s| → ∞, so that
the contribution from the circle at infinity will vanish. So instead of the
contour of figure 1.5 we may use the two-piece contour of figure 1.6. For
the integration along each piece, we pick up the residue at the bound-state
pole within the new contour, together with integrals in opposite directions
along the upper and lower sides of the cut, which is just the integral of the
discontinuity across the cut:

A(s, t) =
g2s

s− sB +
g2u

u− uB +
1
2πi

∫ ∞

s0
ds′
Ds(s′, t, u′)
s′ − s

+
1
2πi

∫ ∞

u0

du′
Du(s′, t, u′)
u′ − u . (1.36)

Here s0, u0 are the thresholds of the lowest states accessible to that channel.
For example in nucleon-nucleon scattering s0 = 4m2

N and u0 = 4m2
π.

We may write the dispersion relation (1.36) more compactly if we extend
the definition of the discontinuities D(s, t, u) to include any bound-state
contributions. So we define

Ds(s, t, u) = −2πig2sδ(s− sB) s < 4m2 (1.37)

with similar definitions for Dt(s, t, u) and Du(s, t, u). Then (1.36) simplifies
to

A(s, t) =
1
2πi

∫ ∞

0
ds′
Ds(s′, t, u′)
s′ − s +

1
2πi

∫ ∞

0
du′
Du(s′, t, u′)
u′ − u . (1.38)

The denominator of the first integral vanishes for s′ = s and for physical
values of s the s′ integration passes through this value. We recall from
(1.31) that we must give s a small positive imaginary part iε to obtain the
physical amplitude. This prevents the denominator from vanishing. We
may write the resulting first denominator as

1
s′ − s− iε = P

1
s′ − s + iπδ(s

′ − s) (1.39)

where P denotes “principal value”. The denominator of the second integral
does not vanish and this term is real, so (1.38) is equivalent to

Re A(s, t) =
1
2πi

P

∫ ∞

0
ds′
Ds(s′, t, u′)
s′ − s +

1
2πi

∫ ∞

0
du′
Du(s′, t, u′)
u′ − u . (1.40)
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Equally we can write fixed-s or fixed-u dispersion relations. For example,
a fixed-s dispersion relation has the form

A(t, u) =
1
2πi

∫ ∞

0
dt′
Dt(s, t′, u′)
t′ − t +

1
2πi

∫ ∞

0
du′
Du(s, t′, u′)
u′ − u . (1.41)

If the amplitude does not go to zero sufficiently quickly as |s| → ∞ for the
contribution from the circle at infinity to vanish in the integral (1.35), then
choose some value s1 of s and write (1.35) as

A(s, t)−A(s1, t) = 1
2πi

∮
ds′A(s′, t)

( 1
s′ − s −

1
s′ − s1

)

=
1
2πi

(s− s1)
∮
ds′

A(s′, t)
(s′ − s)(s′ − s1) . (1.42)

Then if s−1A(s, t) goes to zero like some negative power of s, the integral
over the infinite-circular part of the contour in figure 1.5 again vanishes, and
we can manipulate as before. The resulting dispersion relation is called a
once-subtracted dispersion relation. If one subtraction is not enough for us
to be able to discard the contribution from the circular part of the contour,
we may make another:

A(s, t)−A(s1, t) − (s− s1) ∂
∂s1

A(s1, t) =

1
2πi

(s− s1)2
∮
ds′

A(s′, t)
(s′ − s)(s′ − s1)2

(1.43)

and so on.
A particularly useful form of dispersion relation is for forward elastic scat-
tering, such as NN → NN at t = 0, as the optical theorem (1.25) allows us
to obtain the imaginary part of the amplitude from the total cross section.

1.5 Partial-wave amplitudes

According to (1.7) and (1.8), at fixed s the momentum transfer t varies
linearly with

zs = cos θs (1.44)

where θs is the s-channel scattering angle in the centre-of-mass frame.
Hence, instead of s and t as the independent variables we can use s and zs,
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that is t = t(s, zs). Similarly u = u(s, zs). The amplitude A(s, t) can then
be written as A(s, t(s, zs)), and expanded in the partial-wave series

A(s, t(s, zs)) = 16π
∞∑
l=0

(2l + 1)Al(s)Pl(zs) (1.45)

where Pl(z) is the Legendre polynomial of the first kind, of order l. We
shall discuss later the modifications required for the inclusion of spin. The
factor 16π is included so that in the nonrelativistic limit the partial-wave
amplitude Al(s) has the conventional normalisation. Just as in nonrela-
tivistic scattering, it can be written in terms of a real phase shift δl and an
inelasticity ηl:

Al =
ηl(s)e2iδl(s) − 1

2iρ(s)
(1.46)

where ρ(s) = 2|p1|/
√
s with our choice of normalisation. Below the first

inelastic threshold ηl = 1 and (1.46) can be written as

Al =
eiδl sin δl
ρ(s)

. (1.47)

Otherwise unitarity requires that 0 ≤ ηl ≤ 1. We often choose to make δl
complex by adding to it an imaginary part such that ηl = e−2 Im δl ; then
(1.46) becomes

Al =
e2iδl − 1
2iρ(s)

. (1.48)

The condition 0 ≤ ηl ≤ 1 corresponds to

Im δl ≥ 0. (1.49)

Because of the orthogonality of the Legendre polynomials∫ +1

−1
dz Pl(z)Pm(z) =

2
2l + 1

δlm (1.50)

(1.45) can be inverted to give

Al(s) =
1

32π

∫ +1

−1
dzs Pl(zs)A(s, t(s, zs)). (1.51)

1.6 The Froissart-Gribov formula

The partial-wave series for A(s, t) cannot converge for all s and t, as Pl(z) for
integer l ≥ 0 is an entire function of zs so A(s, t), as defined by (1.45), would



14 1 Properties of the S-matrix

have no singularities in t (or u). The series must diverge at the nearest t (or
u) singularity. According to (1.6), (1.7) and (1.8), for fixed physical values
of s both t and u depend linearly on zs and the t-channel poles and thresh-
olds occur for values of zs greater than 1, while the u-channel poles and
thresholds occur for values less than −1. That is, in the complex zs-plane
the right-hand singularities correspond to the t-channel singularities and
the left-hand singularities correspond to the u-channel singularities. It may
be shown[11] that the partial-wave series (1.45) converges for values of zs
within the Lehmann ellipse, which is an ellipse in the complex zs-plane with
foci at zs = ±1 and passing through the nearest singularity.
We can derive an alternative expression for the partial-wave amplitudes
which incorporates some information about the analytic structure of A(s, t).
It is particularly useful for determining the behaviour of the partial-wave
amplitudes for large values of l. It also provides the basis for the continua-
tion of the partial-wave amplitudes to complex values of l needed for Regge
theory. This is explained in the next chapter and in appendix A. The al-
ternative form for Al(s) is known as the the Froissart-Gribov formula. It
makes use of the Legendre functions of the second kind, Ql(z). These have
branch points at z = ±1 and for physical values of l, that is l = 0, 1, 2, . . .,
one may choose to draw the associated cuts as a single cut along the real
axis joining these two points. The discontinuity of Ql(z) across this cut is

Ql(z + iε)−Ql(z − iε) = −iπPl(z) (|z| ≤ 1). (1.52)

We use this to replace Pl(zs) in the integral (1.51) that defines Al(s). Then
the integral of the Ql(z + iε) term corresponds to an integral over zs along
the upper side of the cut, and the integral of the Ql(z−iε) term corresponds
to one along the lower side of the cut, in the opposite direction because of
the minus sign in (1.52). That is,

Al(s) =
i

32π2

∮
dzsQl(zs)A(s, t(s, zs)) (1.53)

where the integral is round the contour shown in figure 1.7a. In this figure
we have drawn also on the right-hand real zs-axis the t-channel cut and
a t-channel bound-state pole (if there is one), with the u-channel cut and
pole on the left-hand real axis.
Apart from these singularities, and the two branch points of Ql(z), the
integrand of (1.53) is analytic, and so by Cauchy’s theorem the integral of
the same integrand round the closed contours in figure 1.7b vanishes. If
the integrand vanishes rapidly enough as zs → ∞, the contributions to this
integral from the infinite semicircles vanishes. Up to an l-dependent factor,
for large z the behaviour of Ql(z) is z−l. Hence it is valid to discard the
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(b)

(a)

1 1

Figure 1.7. Contours of integration in the zs-plane

semicircular parts of the contour for large enough l, leaving the parts of
the contour along the real axis. The integral along the right-hand part is
just the integral of Ql(zs) times the discontinuity Dt of A(s, t) across the
t-channel singularities, defined in (1.34), while the integral along the left-
hand part similarly involves the integral of Du. As in (1.37), we extend the
definitions of these discontinuities to the gaps between the branch points,
where the bound-state poles lie. So, for large enough l,

32π2iAl(s) =
∫ ∞

1
dz′s Dt(s, t(s, z′s))Ql(z′s)

+
∫ −∞

−1
dz′s Du(s, u(s, z′s))Ql(z′s). (1.54)

This is the Froissart-Gribov formula.



16 1 Properties of the S-matrix

1.7 The Froissart bound

In this section, we explain why the asymptotic (s → ∞) behaviour of a
scattering amplitude is limited by s-channel unitarity and the finite range
of the forces.
To see this, start with the Froissart-Gribov formula (1.54) for s-channel
partial waves. When z > 1, the behaviour of Ql(z′t) for large l is given, up
to a constant factor, by[9]

Ql(z) ∼ 1

l
1
2 (z2 − 1)

1
4

e−(l+ 1
2
) log(z+

√
z2−1). (1.55)

When z < −1, we may use the relation

Ql(−z) = (−1)lQl(z) (1.56)

to deduce the large-l behaviour. Hence at fixed s, the large-l behaviour of
Al(s) is controlled by the value z0 of the singularity of A(s, zs(s, t)) nearest
to the origin in the zs-plane. Usually this singularity is a t-channel or
u-channel bound-state pole. In the neighbourhood of such a t-channel pole,

Dt(s, t, u) = −2πig2t δ(t− tB) (1.57)

as in (1.37). We use (1.10), so that (1.57) is equivalent to

Dt(s, t(s, z′s)) ∼ 4πig2t |p|−2δ(z′s − z0). (1.58)

The expression for a u-channel bound state is exactly similar. So for large l

Al(s) ∼ |p|−2l−
1
2 e−(l+ 1

2
)ζ(z0). (1.59)

The value of zs at the singularity is

z0 ∼ 1 + tB/2p2 or − 1− uB/2p2 (1.60)

so that
ζ(z0) ∼ 1

2

√
tB/|p| or 1

2

√
uB/|p|. (1.61)

So for
l ≥ 2|p|/√tB or 2|p|/√uB (1.62)

Al(s) is exponentially small. This may be understood in physical terms: the
range R of the force is given by R2 = t−1

B or u−1
B , and particles whose trans-

verse separation or impact parameter b is greater than R are not scattered.
Roughly speaking l = b|p|.
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The upper limit (1.62) on l applies at fixed s, but it may change if now
s is allowed to be large. Then p2 ∼ 1

4s, so that at the bound-state pole
Dt(s, t(s, z′s)) ∼ s−1, according to (1.58). It is possible, and indeed it
is expected from the Regge theory described in the next chapter, that
Dt(s, t(s, z′s)) is larger for values of z′s such that t > 4m2 or u < 4m2.
In fact we expect it to be bounded by some power α of s, where α varies
with t or u. This has the effect that for large l the dominant contribution
to the Froissart-Gribov integral (1.54) will come from values of t and u such
that sα is as large as possible while still z′s is close enough to ±1 for the
exponential in (1.55) not to provide too much damping. Hence instead of
(1.59),

Al(s) ∼ l−
1
2 exp

(
M(l + 1

2)/
√
s+ α log(s/s0)

)
(1.63)

where s0 is some fixed scale and the value of M depends on the relevant
range of values of t or u. The physical reason for this change is that, as we
shall see in the next chapter, at high energy the force is not the result of
the exchange of a single particle, but rather the simultaneous exchange of
whole families of particles. Hence Al(s) will be exponentially small for

l ≥ αM−1√s log(s/s0) (1.64)

and the partial-wave series (1.45) may be truncated at this value. From
(1.46), together with the unitarity constraint 0 ≤ ηl ≤ 1,

∣∣∣Al(s)
∣∣∣ = ∣∣∣ηle2iδl − 1

2iρs

∣∣∣ ≤ 1
ρ(s)

(1.65)

and ρ(s) → 1 as s→ ∞. Also, |Pl(zs)| ≤ 1. So, for large s

|A(s, t(zs = 1))| ≤
lMAX∑
l=0

(2l + 1)

lMAX = αM−1√s log(s/s0). (1.66)

After the arithmetic progression is summed, this gives

|A(s, t(zs = 1))| ≤ constant× s log2(s/s0). (1.67)

Applying the optical theorem (1.25) then gives, when s is large,

σTot(s) ≤ constant× log2(s/s0) (1.68)

which is the Froissart bound[12].
Although the result (1.68) reproduces that of Froissart’s original work[12]
our derivation lacks its formal rigour. He assumed only that the dispersion
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relations require a finite number of subtractions and that the amplitude
is polynomial bounded. From axiomatic field theory it proved possible to
determine[13,14] the constant in (1.68):

σTot(s) ≤ π

m2
π

log2(s/s0) (1.69)

although the scale s0 remains unspecified. However if one chooses a rea-
sonable hadronic scale, s0 ∼ 1 GeV2 say, then the limit (1.69) is extremely
high: 10 to 25 barns at Tevatron or LHC energies, that is in the range√
s = 1 to 20 TeV.

A critical discussion of the formulation of asymptotic bounds in general and
of their domain of validity can be found in [15].

1.8 The Pomeranchuk theorem

The Pomeranchuk theorem[16] asserts that, under certain quite strong as-
sumptions, total cross sections for collisions of a particle and the corre-
sponding antiparticle on the same target become asymptotically equal at
high energy. For example, σTot(π+p)/σTot(π−p) → 1 or σTot(pp)/σTot(p̄p)
→ 1 as s→ ∞.
As we are comparing particle and antiparticle interactions we are concerned
explicitly with s-channel ↔ u-channel crossing. From the optical theorem
(1.25), to calculate the total cross sections we need the amplitude at t = 0.
It is convenient to use the variable ν = P1.P2, in terms of which, when
t = 0,

s = m2
1 +m

2
2 + 2ν

u = m2
1 +m

2
2 − 2ν (1.70)

where m1 and m2 are the masses of the two particles. Thus the crossing
simply takes ν → −ν.
The forward scattering amplitude A(ν, t = 0) is analytic in the complex
ν-plane cut along (−∞,−m1m2) and (m1m2,∞) with possible bound-state
poles lying in the region −m1m2 < ν < m1m2. For example in π±p scat-
tering there will be poles at ν = ∓1

2m
2
π corresponding to the nucleon poles

in the s- and u-channels.
For most physical scattering processes, amplitudes are neither symmetric
nor antisymmetric under crossing. In general the process in the crossed
channel is different from the one in the direct channel: the crossed channel
for π+π+ scattering is π−π+ scattering; the crossed channel for π+p scat-
tering is π−p or π+p̄ scattering; and the crossed channel for pp scattering



1.8 The Pomeranchuk theorem 19

is p̄p scattering. But we may construct amplitudes which are symmetric
or antisymmetric under crossing. Take π+π+ and π−π+ scattering as an
example and define

A+(ν, 0) = A(π+π+ → π+π+) A−(ν, 0) = A(π−π+ → π−π+). (1.71)

Then the amplitudes which are symmetric and antisymmetric under cross-
ing are given by

AS(ν) = 1
2(A+(ν, 0) +A−(ν, 0))

AA(ν) = 1
2(A+(ν, 0)−A−(ν, 0)). (1.72)

We write fixed-t dispersion relations (1.38) for each of these. We introduce
an integration variable ν ′, related linearly to s′ and u′ by equations similar
to (1.70). For the symmetric amplitude the second integral in the dispersion
relation for AS(ν) is obtained from the first by changing the sign of ν; also,
according to (1.34) the discontinuityDs(s′, t = 0, u′) is just 2i ImAS(ν ′+iε).
For AA(ν) there are similar statements, except that we must in addition
change the sign of the first integral to get the second one.
Because of the Froissart bound (1.69) the dispersion relations for the am-
plitudes A± or AS,A require at most two subtractions. We introduce a
fixed value ν1, as in (1.43), and then each dispersion relation contains two
subtraction constants, the values of the amplitudes at ν = ν1, together
with their derivatives at the same point. But if we choose ν1 to be 0, the
antisymmetric amplitude AA vanishes there, as does the derivative of the
symmetric amplitude AS. Hence the dispersion relation for each of these
amplitudes has only one subtraction constant:

ReAS(ν)−AS(0) =
ν2

π
P

∫ ∞

m2
π

dν ′
ImAS(ν ′ + iε)
ν ′2(ν ′ − ν) + (ν → −ν)

=
2ν2

π
P

∫ ∞

m2
π

dν ′
ImAS(ν ′ + iε)
ν ′(ν ′2 − ν2)

(1.73)

and

ReAA(ν)− ν d
dν
AA(0) =

ν2

π
P

∫ ∞

m2
π

dν ′
ImAA(ν ′ + iε)
ν ′2(ν ′ − ν) − (ν → −ν)

=
2ν3

π
P

∫ ∞

m2
π

dν ′
ImAA(ν ′ + iε)
ν ′2(ν ′2 − ν2)

. (1.74)

As in (1.40), we have written just the real part of each dispersion relation.
We recall that the amplitudes are real at ν = 0.
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At sufficiently high energy the optical theorem (1.25) gives

ImA±(ν, 0) ∼ 2ν σTot
± (ν). (1.75)

Now we know from the Froissart bound (1.69) that σTot
+ and σTot− are both

bounded by a constant times (log ν)2 as ν → ∞. Suppose that

σTot
+ − σTot

− ∼ C (log ν)n 0 < n ≤ 2 (1.76)

so that, from (1.75),

ImAA(ν) ∼ 2Cν (log ν)n, 0 < n ≤ 2. (1.77)

Then (1.74) gives, for large ν,

ReAA(ν) ∼ − 4Cν
π(n+ 1)

(log ν)n+1. (1.78)

From (1.77), the real part of the antisymmetric amplitude AA(ν) exceeds
the imaginary part by a factor log ν. This implies that the amplitudes
become predominantly real at high energy. The original derivation of the
Pomeranchuk theorem assumed that Re AA(ν) → 0 at high energy, so that
C = 0 and

σTot
+ − σTot

− → 0 (1.79)

at high energy. More refined derivations with weaker assumptions have
obtained[17,18] the weaker condition

σ+(s)/σ−(s) → 1 (1.80)

as s→ ∞, but it is still necessary to assume that a limit exists. It has not
been possible to prove from field theory that this should be true[15].




